The Blavatnik National Awards for Young Scientists name the Finalists who will compete for the worlds largest unrestricted prizes for early career scientists. Online PR News � 31-May-2018 � The Blavatnik National Awards for Young Scientists today announced the 31 U.S. National Finalists who will compete for the worlds largest unrestricted prizes for early career scientists. Each year, three Blavatnik National Laureates in the categories of Life Sciences, Chemistry, and Physical Sciences & Engineering are awarded $250,000 each. The Blavatnik National Finalists were selected from 286 outstanding faculty-rank researchers nominated by 146 institutions across 42 states (see list with brief summaries of their work on page 3). These institutions comprise the nations leading academic and research centers, and each is requested to name their single most promising candidate in one or all of the three categories. Spearheaded by the Blavatnik Family Foundation and administered by the New York Academy of Sciences, the Blavatnik National Awards recognize both the past accomplishments and the future promise of the most talented scientific and engineering researchers aged 42 years and younger at Americas top academic and research institutions. The three 2018 National Laureates will be announced on June 27, 2018. We created the Blavatnik Awards to identify the brightest young minds in science early in their scientific careers, said Len Blavatnik, Founder and Chairman of Access Industries, head of the Blavatnik Family Foundation and member of the Presidents Council of the New York Academy of Sciences. These 31 Finalists, through their creative, cutting-edge research, have demonstrated great promise for future discoveries of enormous scientific importance. Past Finalists have gone on to make discoveries that turn science fiction into reality, including creating plants that emit light or detect explosives, formulating new theories of time travel through black holes, bioengineering micro-robots that can swim through arteries and heart valves, gene-editing DNA and RNA sequences to treat previously incurable genetic diseases, and detecting infectious epidemic viruses through a cellphone. Blavatnik Scholars advance the progress of humanity through scientific discovery. The 31 National Finalists in the U.S. join the Blavatnik Awards community of scholars a decades worth of Finalists and Laureates who are leading scientific research into the next century, said Ellis Rubinstein, President and CEO of the New York Academy of Sciences and Chair of the Awards Scientific Advisory Council. With continued support and recognition from the Blavatnik Awards, our goal is to launch these pioneering young scientists onto an even higher trajectory of scientific pursuit, giving them a visible platform to attract new collaborators, future grants, investors, and other key resources. The Blavatnik Awards, established by the Blavatnik Family Foundation in the United States in 2007, and administered by the New York Academy of Sciences, began by identifying outstanding scientific talent in New York, New Jersey, and Connecticut. The Blavatnik National Awards were inaugurated in 2014 and, in 2018, the Awards were expanded to include young scientists in the United Kingdom and Israel. By the close of 2018, the Blavatnik Awards will have conferred prizes totaling $6.6 million, honoring 271 outstanding young scientists and engineers. The 2018 Blavatnik National Laureates and Finalists will be honored at the Blavatnik National Awards on Monday, September 24, 2018, at the American Museum of Natural History in New York City. About the Blavatnik Family Foundation About the New York Academy of Sciences Please visit us online at www.nyas.org and follow us on Twitter at @NYASciences To follow the progress of the Blavatnik Awards, please visit www.blavatnikawards.org or follow us on Facebook and Twitter (@BlavatnikAwards). For media requests, please contact Dennis Tartaglia ([email protected]; 732-545-1848 or Kamala Murthy ([email protected]; 212-298-3740). The 2018 Blavatnik National Awards Finalists: A Year of Scientific Possibilities 2018 Blavatnik National Finalists in Life Sciences The 2018 National Finalists in Life Sciences have addressed complex questions that reflect the next chapter in human health and development. The Finalists have expanded our understanding of the ways in which the human microbiome governs microbial infection and human health by studying the interactions between bacteria, pathogens and their host. They have developed extraordinary new technologies and discoveries, from harnessing cutting-edge CRISPR gene-editing technology to improve crop yields, editing RNA-based disease targets, identifying key metabolic and physical cues that control the growth and internal organization of cells, developing unique computational approaches to study cancer progression, and inventing technologies that advance our understanding of the brain and organ tissue development. Janelle Ayres (Salk Institute for Biological Studies) Working at the intersection of immunology and microbiology, Dr. Ayres pioneering research on host-pathogen interactions is re-defining our understanding of health. Dr. Ayres discovery that microbes have evolved mechanisms to promote the health of the host to support their own survival reveals a beneficial role for microbes in maintenance of host health. Promoting host tolerance of microbes may offer a novel therapeutic approach to treating infections that is not reliant on antibiotics. Edward Boyden (Massachusetts Institute of Technology) Dr. Boyden has invented multiple groundbreaking technologies that have advanced our understanding of the brain. Dr. Boyden revolutionized neuroscience research with the co-invention of optogeneticsusing light to control cells in genetically modified living tissues. More recently, he developed expansion microscopy, a creative approach that involves physically expanding a specimen using swellable polymers to achieve high-resolution images instead of increasing the resolution of the microscope. Clifford Brangwynne (Princeton University) Dr. Brangwynnes pioneering work at the interface of cell biology and soft matter physics focuses on membrane-less organelles within cells, and how their physical state plays a role in associated biological functions. Dr. Brangwynnes seminal discovery that membrane-less organelles behave as liquids rather than solids has introduced a major paradigm shift in our understanding of intracellular organization and sheds light on the material physics underlying organelle processes. Zachary Lippman (Cold Spring Harbor Laboratory) Having identified several genes that determine flower production and crop productivity, geneticist Dr. Lippman is applying cutting-edge CRISPR gene-editing technologies to improve crop yield. Dr. Lippman has demonstrated that manipulating the genome of plants to fix undesirable combinations of mutations introduced by breeding or to introduce new gene mutations that improve the health or flowering capacity of the plant can improve yield. In doing so, Dr. Lippmans work has the potential to help address one of our top public health concerns: global food supply shortage. Franziska Michor (Dana-Farber Cancer Institute) Dr. Michors work has led to the first clinical trials based on the evolutionary mathematical modeling of cancer. Dr. Michor investigates the evolutionary dynamics of cancer using mathematical modeling methodologies and a unique combination of approaches. She studies the process of cancer initiation and progression along with cancer stem cells, the evolution of drug resistance and the dynamics of metastasis formation focusing on lung, brain, breast and pancreatic cancers. Joseph Mougous (University of Washington) Dr. Mougous studies how bacteria interact with each other across a wide range of settings. Dr. Mougous discovery that bacteria use a specialized secretion system to deliver toxins to other bacteria during cell-to-cell contact has revolutionized our view of bacterial communities. Dr. Mougous has also shown that this ongoing battle between bacteria shapes the personalized combination of bacteria in an individuals gut microbiome, opening the door to the development of innovative strategies for manipulating gut bacterial assemblages to promote human health. Celeste Nelson (Princeton University) Dr. Nelsons biomedical engineering and biotechnology research focuses on how complex organs are formed during morphogenesis in branching tissues such as the lung, kidney and mammary gland. She is a pioneer in tissue engineering/microfabrication and smooth muscle development and seeks to understand the biomechanical and dynamic molecular mechanisms that influence tissue remodeling during development, wound repair and abnormal cell growth. Bradley Pentelute (Massachusetts Institute of Technology) Dr. Pentelute synthesizes new biomolecules for therapeutic compounds, focusing on peptides and proteins. He developed fast-flow peptide synthesis, a new technology that assembles polypeptides from smaller individual molecules at unprecedented speed. Dr. Pentelutes group can form links between amino acids, the building blocks of proteins, in less than a minute, and generate complete peptide molecules containing up to 60 amino acids in less than an hour, a vast improvement from current technologies. Benjamin Tu (UT Southwestern Medical Center) Molecular and cellular biologist Dr. Tu studies metabolism and cellular processes using both yeast and mammalian systems. He has uncovered novel molecular mechanisms that govern cell growth and proliferation in response to metabolic and nutritional cues. Dr. Tus research focuses on the metabolic state of cells and responses to conditions that induce or halt cell proliferation to promote survival and homeostasis. Gene Yeo (University of California, San Diego) Dr. Yeo has created multiple novel technologies that have increased our understanding of RNA processing and RNA-binding proteins. Dr. Yeo was the first to target RNA (as opposed to DNA) using the CRISPR/Cas9 system in live cells and demonstrated reversal of key pathological features of microsatellite expansion diseases by destroying toxic RNA in patient cells. Dr. Yeos discoveries hint at the enormous possibilities of tapping the therapeutic potential of RNA manipulation in the treatment of human disease. 2018 Blavatnik National Finalists in Chemistry The 2018 National Finalists in Chemistry are making significant advances in chemical research that have the potential to improve peoples lives. Their research efforts range from deciphering the chemistry of the human gut microbiome and its connection to disease to developing novel materials that will increase the efficiency of next-generation solar cells. They have designed novel ways of assessing the toxicology of nanoparticles in the environment, developed new tools for labeling biomolecules, pioneered new quantum dotbased technologies and created nano-sized sensors capable of making non-invasive measurements of brain activity. Emily Balskus (Harvard University) Dr. Balskus is a chemical biologist pioneering breakthrough advances at the interface of chemistry, enzymology and microbiology. Her research focuses on identifying the novel chemistry of the human gut microbiome and deciphering the role that gut microbial metabolism plays in human health and disease. One signature achievement is elucidating the mechanism by which bacterial toxins called Colibactins are biosynthesized and behave within the gut. Luis Campos (Columbia University) A creative polymer chemist focusing on molecular design of novel functional materials to address important problems in materials chemistry, Dr. Campos has spearheaded the synthesis and development of new chromophoresmolecular modules that interact with light that possess significantly advanced electronic properties and have the potential to increase the conversion efficiency of next-generation solar cells. Bianxiao Cui (Stanford University) Dr. Cui is a biophysical chemist making groundbreaking advances in the development of complex biophysical tools for observing how living cells interact with nano-scale materials and devices. Two of her signature innovations have been to identify membrane curvature as a key player at the cell-nanomaterial interface, and create nano-sized-pillar based electrical sensors that are capable of highly sensitive, non-invasive measurements of neuronal activity. Her work has immense implications on the fields of tissue engineering and regenerative medicine and will undoubtedly influence the design of implantable devices. Mircea Dinc (Massachusetts Institute of Technology) Dr. Dinc is a solid-state chemist pushing boundaries in the area of metal-organic frameworks (MOFs). MOFs were traditionally used for gas storage and separation and were usually electrical insulators. Dr. Dinc was the first to design new MOFs that function as conductors, with electrical conductivity comparable to that of the best conducting polymers used in organic solar cells. These materials open the door to a host of new applications in solar cells as well as new membranes for better lithium- and sodium-ion rechargeable batteries. Neal Devaraj (University of California, San Diego) Dr. Devaraj is a biochemist whose transformative work on the synthesis of artificial cells and membranes has created an exciting new field of research that aims to address one of the great challenges in synthetic biology. He has made several game-changing discoveries. Among his signature achievements is the development of new methods for labeling biological molecules, which are so widely used by researchers that reagent suppliers now include his probes in their catalogs. Neil Garg (University of California, Los Angeles) Dr. Garg is a synthetic organic chemist who is a world leader in the synthesis of complex molecules. Some of his creative work involves the development of reactions involving cyclic alkynes, which are a chemical species traditionally considered too reactive to be useful. His reactions are now employed by the pharmaceutical industry to synthesize new drug candidates. Dr. Garg is considered an innovator in chemical education and has made significant contributions to the field of catalysis developing new reactions that allow chemists to break bonds that were once considered unbreakable. Christy Haynes (University of Minnesota, Twin Cities) Analytical chemist Dr. Haynes is a pioneer in the development of novel assays to assess the toxicology of nanoparticles in physiological and ecological systems. She has shown definitively that nanoparticles can alter cellular function and has been working to redesign nanoparticles so that they have maximal technological impact and minimal unintended consequences. Bo Huang (University of California, San Francisco) Dr. Huang, a chemical biologist, has innovatively repurposed CRISPR-Cas9 (a cutting-edge gene-editing tool) as a tool for visualizing the chromosomes in living cells, an advance that is reshaping how scientists approach the study of the function and alterations of the human genome. In addition, he has pioneered the development and application of endogenous labeling and super-resolution microscopy techniques to the study of various biological systems. Joseph Subotnik (University of Pennsylvania) Dr. Subotnik is a theoretical chemist who has made significant advances in the area of modeling electronic relaxation: the relaxation of electrons into their least energetic state. The work is significant because it provides one of the few practical and rigorous means of modeling catalytically active and photo-excited materials. Dr. Subotniks work has made great strides towards closing the gap between accurate theoretical chemistry models and experimentally obtained results. Emily Weiss (Northwestern University) - Dr. Weiss is a physical chemist doing pioneering cross-disciplinary work using semiconductor quantum dots as model systems to study processes at interfaces between different materials. Quantum dots are excellent light absorbers and emitters over the entire visible and near-infrared spectrum, and have properties tunable by their size and chemical structure. As such, they find applications in solar energy conversion, photocatalysis of chemical reactions, and biological and chemical sensing. 2018 Blavatnik National Finalists in Physical Sciences & Engineering From predicting and understanding the behavior and make-up of astronomical bodies with astonishing accuracy to using enormous data sets to understand more about the human condition, the 2018 National Finalists in Physical Sciences & Engineering are pushing the boundaries of human knowledge and understanding of the universe around us, both near and far. This years Finalists are also rapidly advancing our scientific understanding of unique physical phenomena that exist at the nano- and even atomic scale, helping to create technologies that will revolutionize the telecommunications, opto-electronics, and energy storage industries. Andrea Al (The Advanced Science Research Center at The Graduate Center of the City University of New York,; formerly of University of Texas at Austin) Electrical engineer and physicist Dr. Al has made seminal contributions to the theory and engineering of metamaterials and introduced new concepts to create metamaterials that mold electromagnetic waves, light and sound in unusual ways. He has made pioneering discoveries in plasmonic cloaking and invisibility, optical nanocircuits and nanoantennas, and in generating nonlinear and nonreciprocal optical responses in metamaterials. Alexandra Boltasseva (Purdue University) A physicist and electrical engineer, Dr. Boltassevas research approach merges the field of optics with materials engineering and is making possible a new generation of nanophotonic technologies and all-optical devices for telecommunications, sensing, energy and information processing. Her research in plasmonics where light is confined to the nanoscale enabling a range of new devices to be developed has uncovered new tailorable ceramic plasmonic materials, which have improved performance over previously used materials. Xiangfeng Duan (University of California, Los Angeles) As a physical chemist, Dr. Duan focuses on the design and synthesis of highly complex nanostructures with controlled chemical composition, structural morphology and physical dimensions. He places particular emphasis on the integration of nanoscale structures with different chemical composition, structure or function, thereby creating a new generation of integrated nanosystems with unprecedented performance or unique functions to break the boundaries of traditional technologies. Jonathan Fortney (University of California, Santa Cruz) A planetary scientist, Dr. Fortneys research challenges our current understanding of the formation, evolution and structure of distant exoplanets and planets in our very own solar system. For instance, his research investigating hot Jupiter-class exoplanet atmospheres has provided strong evidence for the existence of two unique classes of exoplanetary atmospheres on these planets and is shaping our understanding of planetary composition and formation. Ryan Hayward (University of Massachusetts Amherst) As a polymer scientist and chemical engineer, Dr. Hayward creates material systems with elastic buckling instabilities that transform their shape, surface morphology and material properties, on demand. He has developed microscale polymeric sheets that self-fold into origami structures and 3D shapes in response to external stimuli such as light and heat. His work also focuses on the assembly of nanoscale materials such as polymer nanowires and polymer-embedded nanoparticles to control macroscale properties. Sergei V. Kalinin (Oak Ridge National Laboratory) A materials scientist and nanoscientist, Dr. Kalinin creates novel technologies to study and control the functionality of nanomaterials by combining imaging, big data and materials theory. Dr. Kalinin and his collaborators recently challenged a 25-year paradigm by proposing and implementing the atomic forge a new approach that uses the atomically-focused beam of a scanning transmission electron microscope to control and direct matter, manipulating single atoms to enable fundamental physical studies and also to develop quantum computing and single spin magnetoelectronic devices. Jure Leskovec (Stanford University) Dr. Leskovec is a computer scientist who has revolutionized our understanding of large social and information networks. Using experiments, analysis and modeling, he was first to validate the six degrees of separation hypothesis and demonstrated how influence and trust propagate through social networks and shape online communities, viral networking and media bias. Ying Shirley Meng (University of California, San Diego) Dr. Meng, a materials scientist and engineer, utilizes computational approaches and unique operando and in-situ experimental approaches to understand, develop and optimize the behavior and operation of electrolyte and electrode materials in batteries to drive better energy storage and conversion performance. She and her team recently developed a novel type of liquefied gas electrolyte material that allows battery operation at ultra-cold temperatures. Brian Metzger (Columbia University) As a theoretical astrophysicist, Dr. Metzger works on a broad range of topics related to the transient universe. In 2010, he predicted the visual flares termed kilonova that accompany the coalescence of binary neutron stars. In 2017, the LIGO/Virgo collaboration detected gravitational waves from merging neutron stars for the first time. The fading light seen following this event agreed remarkably well with Dr. Metzgers predictions and revealed these mergers as factories of the heaviest elements like gold in the Universe. Anastasia Volovich (Brown University) Dr. Volovich is a theoretical physicist working in quantum field theory, general relativity and string theory. She has developed extremely efficient methods to evaluate scattering amplitudes, the key quantities that describe scattering of elementary particles, and discovered a remarkable connection between mathematical cluster algebras and scattering amplitudes, sparking an intense new interaction between physics and mathematics. Gleb Yushin (Georgia Institute of Technology) A materials scientist and nanoscientist, Dr. Yushin has made multiple transformative contributions to the synthesis of advanced materials for batteries and supercapacitors. Combining innovative nanoscale synthesis approaches with the development of novel analytical techniques, he develops nanostructured and nanocomposite materials with remarkable performance characteristics. He has recently discovered a fundamentally new synthesis mechanism to fabricate oxide nanowires from low-cost powders. His research has applications in next generation electric vehicles and electronic devices. |
�These 31 Finalists, through their creative, cutting-edge research, have demonstrated great promise for future discoveries of enormous scientific importance.�
Kamala Murthy |
http://blavatnikawards.org/ |
212-298-3740 |